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ABSTRACT

     An original result concerning the extension of 
Gauss’s theorem from the theory of binary quadratic 
forms over forms with more unknowns was presented 
by Bratu in 1994. 
The result did not appear in world-wide publications 
and it was not sufficiently exemplified in applications. 
This is the purpose of the actual paper. 
Keywords: Representation of elements; quadratic 
forms; Gauss’s theorem; automorphic transformation; 
the Pell’s equation, Lagrange’s Four-Square Theorem. 

1. Actual theory

A quadratic form over an arbitrary field K of characteristic not 2 is a 
 homogeneous polynomial having the coefficients in K :

f =   )aa(xxa jiijijij   or
f = X' A X    (1)

The representation of elements of K implies the solvability of the equation f =0 and the 
finding of an algorithm for the representation of zero. Theorem Minkowski-Hasse 
responses to the first condition [1]. The theory solves the case of quadratic forms of rank 
2 for the second condition. There is an isomorphism between the set of classes of similar 
modules and the set of classes of binary quadratic primitive and self equivalent forms. 
The fundamental notion is the automorphic transformation, defined as the linear 
transformation of determinant D = 1, which transforms a quadratic form into itself. In the 
case of rational fields, Gauss stated a remarkable result, which defines the coefficients of 
the unimodular matrix of the transformation. 
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Gauss’s Theorem For a binary quadratic form: f (x, y) = ax2  + bxy + cy2,

  where we suppose (a,b,c) = 1, if the linear transform of matrix G = 
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where t, u Z, such that they verify the Pell’s diophantic equation:                

t2 - du2  = 4     (3)

and d is the discriminant of the form. The converse of this theorem holds too

 The proof of it showed in [2]
 Gauss’s theorem reduces the quest for solution of the diophantic equation 
f(x,y) = m, to the finding of a solution of the Pell’s equation (3).
 For the applications, [2], we have defined the minimal integer positive 
solution different from the ordinary solution (t = 2, u =0), as being the 
ordered    pair (x, y), with x>0 and y>0, for which, for any other solution (x`, 
y`), we   have         x<x`, or, if x=x`, then y<y`. 

2. A general theorem of the Gauss type

In [4], we showed that we could affirmatively respond to Dickson’s 
problem [3] for the second-degree equations with several unknowns 
proposing a generating method for rational solutions. The completion 
concerning the numeric representation is given in [5]. One of the 
applications of the generalized theorem was discussed in [6]. The result 
appeared in [4] is developed and exemplified in the present paper.
   
 Let f be a quadratic form of several unknowns, which is easier to be written 
in the canonical form:

f = a1 x1
2 +…..+ai xi

2  - ai+1 x2
1i     -…..-an x2

n                  [4]

 where a1 ,a2 ……an  N. The determinant will be:  d = (-1)n-i   a1 a2 …..an  
and the algebraic sum of the coefficients will be called “the trace” of the 
diagonal quadratic form:   S =  a1  + …..+ ai  - ……- an
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Remark 1. S = 0, if S = 0, a variable change is made, so that we have S =0

General Theorem (Bratu) For any rational quadratic form [4], brought to 
the canonical form, one can determine an automorphic linear 
transformation defined by the unimodular matrix below:

B = 

Sa2....a2....a2a2
......

......
a2....Sa2....a2a2

......

......

a2....a2....Sa2a2
a2....a2....a2Sa2

S
1

n1i21

n1i21

n1i21

n1i21
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














where a1 , ,…….an  N , the coefficients of the form, and S Z  is the trace 
of the quadratic form. For the binary quadratic form, the matrix B is 
identical to Gauss’s matrix G, built for the rational solution of Pell’s 
equation attached to the form.  If the equation f = m, with d positive and m 
rational, has a solution, then the matrix B generates the set of rational 
solutions.

  Proof. The matrix B comes from the matricial writing of the generating 
relations of a positive increasing solution for the x variable, from a natural 
solution (x1,…..xn.):

                x '
1  = - x1  +

S
2

(a1 x1  +……ai  xi  - ai+1  x i+1  -……- a n x n )

                ……………………………………………………                  (6)

                x '
n  = -x n +

S
2

 (a1 x1  +……ai  xi  - ai+1  x i+1  -……- a n x n) 

  Changing the sign in the columns i +1,…..,n of the matrix we write:

                         B  =   I -
S
2

A                                               (7)

  with            det B1= (-1)n-i det B     and      det2 B1 = det2  B                    (8)  
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where I is the unit matrix of n-order, det B is the determinant of the matrix B 
and A is a degenerate matrix of the form:

A

n21

n21

n21

a....aa
....

....
a....aa

a....aa



In order to show that B is unimodular, we take:
         

                            B2
1  = 

2S
1

(S2 I – 4 S I A + 4 A2)

  and we get           B2
1 = I ,  i. e.  det  B2 = 1

  For the second part of the theorem let

                              ax2 - by2 = m                                                               (9)

  be a quadratic equation, with  ab > 0.
  We have:
                   d = 4 a b         and      S  = a – b                                   (10)
  The matrix B  is written :

B = -
Sb2a2

b2Sa2

S
1




(11) 

and                   B = 
baa2

b2ba

ab
1






                                         (11`)

with            det2 B = 1

A rational solution of Pell’s equation is:
                                     

                            to  = 2
ab
ba




         and          u  = 
ab

2

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 Gauss’s matrix built from this solution:

G = 
baa2

b2ba

ab
1






                                             (12) 

  We get:                  G   B                                      q.e.d.                       (12`)

Remark 2. In applications, for the generating of another natural solution 
{x’} from one that is given {x}, it is necessary and sufficient that the term: 

                                  t = -
S
2

 ( a1 x1 +……..- an xn  )                                   (13)

                                                                  
 has at least an integer value among the 2n-1 possible values.  A sufficient 
condition is that S, the trace of the quadratic form, to have the values  1 or 
 2
 If not, we use a power matrix B, which is still unimodular. It is necessary an 
extension of the previous definition of the minimal solution.

Definition 1. For the equation attached to the n-degree quadratic form, we 
call minimal positive solution the ordered (x1 ,…xn ) which is a solution of 
the equation in which all variables are integers and nonnegative and at least 
one is not null and verifies:
 for any other ordered {x '

i  }, rational integer nonnegative solution,  
 we have  x1 < x '

1 , if x1  = x '
1  , then  x2  < x '

2 ,……and if xn-2= x '
2n  , then  

 xn-1    < x '
1n .      

Consequence. The multitude of the integer solutions of the equation (1) can 
be represented by the nodes of a lattice. The automorphic transformation of 
matrix B generates the multitude of solutions:

          
                                   Xi+1 = Xi *B                                                        (14)

 The signs for the integers xi are choose so that integer solutions can be 
obtained  xi+1  .
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3. Examples

3. 1 The equation    x2  - 2y2  = 7
 In the literature, the equation is an example for the solving method of binary 
equations with positive determinant, by the actual method; we have Pell’s 
equation:  

                t2 - 8u2  = 4          and Gauss’s matrix     G =
32

43

 We consider the couples  (3, 1) and  (5, 3) as the minimal positive solutions 
and by recurrent formulas:
                                                      xi+1 = 3xi  + 4yi

   y i+1 = 2xi  + 3yi    
 we get two infinities of natural solutions.
 By the proposed method, we apply the transformation defined by B matrix, 
where S = - 1: 

B = 
32

43
= G

 According to definition 1, the minimal positive solution is unique, namely 
(3,1). The graphic representation of the solution set is a chain, the top being 
the minimal solution. From the minimal solution –the chain top- (3,1) there 
can be obtained two major solutions: (5,3) and (13,9), etc.

3. 2.  The equation   x2 - 5y2 = 1
 In literature, this equation of type Pell is solved through the finding of the 
minimal positive solution, using the method of continues fractions [2]. In our 
method, Pell’s equation does not have a special role anymore. Starting from 
the ordinary solution (1,0), the use of the matrix B, where S = -4, will 
generate fractional solutions. We look for a natural number p, so that the 
matrix B could have only integer elements. We have:

B1 = B3  = 







94

209
 and the integer solutions will be generated by this 

matrix B1:  (x1, y1) = (9,4), etc. 

3. 3.  The equation   x2  + 2y2 + 3z2 - 5w2 = 15
 A ordinary equation where S = 1                          



7

Matrix B is written:

B=

11642

10542
10632

10641

Starting from a certain solution S  = (3, 2, 1, 1), other 5 new solutions can be 
obtained: (5, 4, 1. 3), etc. 

3. 4.  The equation   x2 + y2 + z2 = 89
 The equation has solutions, the number 89 being not equal to 4l (8k + 7).
 Let S = (9,2,2) be the given solution and we check if there is at least a 
rational integer value t among the possible four:  

  t = 
3
2

(  9 2 2 )

 We build the matrix B:

B= 

122

212

221

3
1







 and we determine the solutions :  (3,4.8), (0,5.8), (6,2,7), which are all the 
decomposition in sum of three squares. We notice that 89 is a prime number 
having a unique decomposition in sum of two squares.

3. 5. The equation x2 + y2 + z2 = w2

 This equation was discussed in [6]. The matrix B is written:

Si+1 = Si * B     and       B =

2111

1011
1101

1110








The multitude of solutions is represented through the nodes of a graph, with 
the top the ordinary solution  (1,0,0,1)
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              In [7], we showed that, using the function “quadratic combination”, 
we find the general solution of the diophantine equation, type Euler-
Carmichael-Mordell:  x2 + b y2 + c z2 = w2 (b, c) Z
We enunciated a theorem, which is stronger than the Lagrange’s Four 
Square Theorem:
    Theorem (Bratu) For any natural number z, there are at least three 
integer numbers (u,v,w), or/and (a,b,c), in order to have representations:
           z= u2  +  v2  +   w2      ( )
           z= a²  + b²  + 2c²      ( )                                                                (15)
 For  z = z1 = 22k   (8l + 7)  we have only the representation ( ),
 for   z = z2 = 22k+1 (8l + 7)  we have only the representation  ( )   and
 for  z  z1  z2  we have, in the same time, the representations  ( ) and ( )  
          Examples:      z = 15    we have z  = 32  + 22  + 2 * 12       ( )
                                 z = 30    we have  z  = 52  +  22  + 12           ( )
                                 z = 21    we have  z  = 42   + 22  + 12           ( )  and
                                                              z  = 32   + 22  + 2 * 22      (  ).
Conclusion   The proposed method, for the determination of the solutions 
of quadratic equations, is different from the ones that exist in literature, from 
Fermat, Lagrange, Gauss.
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